Search this Blog & the WWW

Pages

Thursday, July 10, 2008

Recycling Initiative: Nuclear power - Outside a Nuclear Power Plant

Once you get past the reactor itself, there is very little difference between a nuclear power plant and a coal-fired or oil-fired power plant except for the source of the heat used to create steam.

Electricity for homes and businesses comes from
this generator at the Shearon Harris plant.
It produces 870 megawatts.

Pipes carry steam to power the generator at the power plant.

The reactor's pressure vessel is typically housed inside a concrete liner that acts as a radiation shield. That liner is housed within a much larger steel containment vessel. This vessel contains

the reactor core as well the hardware (cranes, etc.) that allows workers at the plant to refuel and maintain the reactor. The steel containment vessel is intended to prevent leakage of any radioactive gases or fluids from the plant. Finally, the containment vessel is protected by an outer concrete building that is strong enough to survive such things as crashing jet airliners. These secondary containment structures are necessary to prevent the escape of radiation/radioactive steam in the event of an accident like the one at Three Mile Island. The absence of secondary containment structures in Russian nuclear power plants allowed radioactive material to escape in an accident at Chernobyl.


Steam rises from the cooling tower at the Harris plant.

Workers in the control room at the nuclear power plant
can keep an eye on the nuclear reactor and take action if
something goes wrong.

Uranium-235 is not the only possible fuel for a power plant. Another fissionable material is plutonium-239. Plutonium-239 can be created easily by bombarding U-238 with neutrons -- something that happens all the time in a nuclear reactor.

No comments:

LinkWithin

Related Posts with Thumbnails